Patrimonio Histórico: Monitorización estructural de la Iglesia de San Salvador. Leganes. Madrid.

IMG_8280.JPG
Alcanzar los más de 15 metros de altura en la nave central pasa por disponer de un equipo de elevación adecuado. 

Durante el pasado mes de Diciembre de 2016 hemos realizado una completa monitorización estructural en varios puntos críticos de la conocida Iglesia de San Salvador en Leganes. Madrid.

Contando con la dirección técnica del Arquitecto José Santos Torres, el equipo de instaladores fijó mas de 20 sensores de medida (fisurometros, inclinometros, etc.) a lo largo de diferentes puntos definidos por el Arquitecto en el interior de la Iglesia. (Nave Central, Torre, Cúpula, etc).

En este tipo de monitorización  de Patrimonio Histórico, los aspectos más importantes a tener en cuenta se resumen en 4 puntos:

(1/4). Minimizar impacto visual.

La Iglesia de San Salvador es un templo muy visitado y querido por los feligreses de Leganes, se trata de un tempo repleto de notables Retablos e Imágenes religiosas y localizada en el centro urbano de Leganes. Por todo ello, era necesario conseguir que el impacto visual de los sensores y el cableado fuese el menor posible.

img_8297-1
Minimizar el impacto de la instalación de sensores y cableado es una labor necesaria para que el sistema de monitorización pase desapercibido en un segundo plano.

Es en los pequeños detalles durante la instalación (evitar colores llamativas, fijar bien el cableado evitando catenarias inútiles, buscar esquinas para paso de cable, etc.) es donde se consiguen los mejores resultados en este aspecto.  Podemos decir que contando con el apoyo y supervisión de los técnicos desplazados del sistema de monitorización empleado (kBuilding), el resultado ha sido optimo.

(2/4). Minimizar tiempos de instalación.

La instalación  de los sensores se realizo durante las fiestas navideñas donde la Iglesia tiene una amplia agenda de actos religiosos. Los trabajos se diseñaron de manera que la instalación se realizase con rapidez. Para ello, todos los equipos y sensores se llevaron montados, ajustados y chequeados desde la oficina técnica (Pruebas FAT, SAT, SIT), además la minimización en el cableado (apenas 100 m.) en toda la instalación hace que en 12 horas de trabajo todo el sistema estuviese instalado y funcionando.

IMG_8285.JPG
Durante los trabajos de instalación de sensores y equipos fue necesario sincronizar las tareas con intervalos donde en la Iglesia se realizaban cultos acordes al periodo navideño.

(3/4). Cumplir plazos

Para la ejecución de los trabajos fue necesario coordinar los trabajos con una empresa auxiliar responsable de liberar el espacio en el interior de la Iglesia (mover bancos), colocar un suelo de madera protector  y manejar con precisión una plataforma elevadora telescópica imprescindible para alcanzar los más de 15 metros de altura en la nave central. Cumplir plazos dentro del cronograma de  montaje previsto, es permitir que los bancos puedan volver a su ubicación y que la Iglesia pueda funcionar con normalidad.

IMG_8262.JPG
Para la entrada de la plataforma elevadora de oruga en el interior de la Iglesia es imprescindible proteger el suelo. Las características de esta máquina (tamaño, peso, rangos de distancias) la hacen imprescindible para este tipo de montajes interiores. 

(4/4) Viabilidad económica. Optimizar costes

Siempre es necesario tener presente el coste de una monitorización para hacerlo compatible con el resto de requisitos del proyecto. Entendemos la monitorización como una herramienta de ‘mínimos’ que garantice tener controlada la estructura de una manera optima y rentable para todas las partes.

El enfoque basado en optimización de costes es el necesario para poder abordar proyectos de este tipo donde la necesidad del sistema es evidente pero donde también los recursos económicos disponibles (presupuesto) son muy limitados.

Nuevos tiempos para las construcciones urbanas

 

36 madrid_austrias
La reconstrucción de edificios en cascos históricos ha sido un problema en las ciudades. Madrid de los Austrias.

 

Es estos últimos años, se ha observado un repunte en la reconstrucción y rehabilitación de edificios situados en el  casco antiguo de las ciudades, revalorizando estas zonas céntricas y dejando atrás los tiempos de decadencia a las que se habían visto sometida.

La falta de solares libres en el centro histórico, hace casi obligatoria la demolición de la estructura existente, ya sea de manera total o parcial (en el caso de que tengamos que conservar la fachada principal por tratarse de un edificio singular). La nueva promoción tendrá que adaptarse a la demanda actual del mercado, por lo que es muy habitual la construcción de sótanos para ofrecer plazas de garaje y trasteros a los nuevos inquilinos.

Una vez que estamos en el solar, es cuando aparecen las primeras tramas, cuando pasamos del papel a pie de obra. El comportamiento de una estructura sometida a cambios en su reparto de cargas hace que esta sufra movimientos. Podemos hacer un estudio previo del comportamiento que puede tener la estructura o incluso una simulación, pero en la obra pueden surgir diferentes batallas. Y es ahí cuando incorporar las nuevas tecnologías que disponemos actualmente cobra sentido. Monitorizar estas estructuras con kBuilding te ofrece mejoras en cuestiones de:

  • SEGURIDAD
  • RENDIMIENTO
  • ECONOMÍA
  • ESTÉTICA (En el caso de monitorización de edificios históricos)

Las actividades de demolición y vaciado de un solar, afectan directamente a los edificios colindantes, disminuyendo temporalmente sus prestaciones y capacidades. Uno de los primeros síntomas, son los movimientos de reajuste de la estructura debidos al efecto descarga generado por la demolición, que nos da lugar principalmente a la aparición de grupos de grietas y fisuras en las medianeras. La monitorización de estas grietas para observar su comportamiento a lo largo de la ejecución de la obra de vaciado del solar, nos puede prevenir de daños más graves e importantes en la estructura.

img_7464
Medianeras monitorizadas por kBuilding en el Barrio Salamanca, Madrid.

 

En cuanto a las excavaciones, a diferencia de las construcciones de grandes residenciales en el extrarradio, en estos casos hay que tomar una serie de precauciones, ya que se trabaja con menor grado de libertad al poder afectar a las cimentaciones de edificios anexos. En varias ocasiones hemos visto noticias sobre desplomes de muros en edificios colindantes a una obra o incluso su colapso y esto suele ocurrir por la intrusión de la excavación en zonas que afectan al terreno de cimentación del otro edificio, produciendo movimientos de tierras que comprometen a la seguridad del edificio.

Como dice el dicho, es mejor prevenir que curar, por lo que aparte de tomar las precauciones típicas, previas a la ejecución de la obra, ahora podemos beneficiarnos de nuevas tecnologías como es la monitorización remota de kBuilding. Basándonos en la colocación de sensores ( fisurómetros, inclinómetros, acelerómetros…)  que permiten registrar, visualizar y alertar de posibles movimientos en  tiempo real de la estructura que queremos controlar, manteniendo la seguridad en la zona de trabajo de la obra.

Monitorización de una Vivienda Unifamiliar

IMG_6213
Personal a la llegada de la vivienda unifamiliar. En la vivienda no se disponía de suministro eléctrico luego todo los equipos instalados son 100% autónomos.

En este nuevo caso real de monitorización estructural utilizando la plataforma kBuilding.es, el objetivo inicial era evaluar el posible movimiento de una vivienda unifamiliar ubicada en una ladera dentro de una urbanización próxima a la ciudad de Jaén.

La vivienda unifamiliar con una superficie en planta superior a las 150 m² presenta actualmente una fuerte inclinación a favor de la ladera. La nivelación de la parcela con rellenos mal compactados se articula como la causa potencial del movimiento. Una cimentación basada en losa de hormigón, ha hecho que si bien la vivienda presente un desnivel acumulado entre de más de 15 cm, en la vivienda no han aparecido grietas. La vivienda se mueve como un bloque rígido apoyado en un terreno sin consolidar y con nulas características mecánicas.

IMG_6216(1)
Equipo concentrador de señal IP68 anclado a la solera (planta baja) de la vivienda unifamiliar. El equipo es 100% autónomo sin necesidad de suministro eléctrico.

Con la intención de seguir controlando el movimiento de la vivienda, el equipo técnico responsable de la estabilización, ha optado por la instalación de dos inclinómetros de precisión anclados a la solera de la planta sótano de la vivienda y en el punto mas alejado del eje de giro de la losa de cimentación.

 

Actualmente el sistema de monitorización lleva mas de 4 meses monitorizando el movimiento de la losa. El objetivo es pasados 6 meses de seguimiento,  ejecutar la solución técnica que permita la estabilización de la losa (inyección de mortero o ejecución de micro pilotes) y comprobar durante los siguientes 6 meses la efectividad de la solución adoptada.

A nivel de costes, este tipo de monitorización está en linea con el alcance del proyecto y su duración. Se puede redondear a un coste final de 50 €/mes por cada señal adquirida incluyendo instalación y alquiler de equipos durante la fase de monitorización.

 

Monitorización de vibraciones en una estructura

 

Representacion onda sísimica

Muchas actividades diarias que ocurren en una sociedad industrializada generan vibraciones: tráfico de toda clase de vehículos, cercanía a vías de tren, proximidad de maquinaria de construcción, zonas de gran actividad industrial e incluso proximidad a canteras donde se producen frecuenten voladuras como parte de su actividad de explotación.

Estas vibraciones pueden generar molestias a las personas y daño estructural. El potencial de efectos perjudiciales depende de diversas características de estas vibraciones: por un lado amplitud, frecuencia, duración y por otro de las propiedades de comportamiento dinámico de los sistemas que excitan (frecuencia de resonancia y resistencia de la estructura).

Resumiendo, es el sistema que compone fuente emisora-suelo transmisor-estructura el que determina en conjunto el efecto del fenómeno vibratorio.

A nivel operativo, para los técnicos generalmente no nos es factible –por tiempos y costes– realizar evaluaciones detalladas de las componentes a predecir, y así poder controlar los efectos de las vibraciones en la estructura. Se recurre entonces a leyes empíricas generalizadas, recomendaciones genéricas y normas para evaluar si las vibraciones generadas por actividad humana pueden tener efectos dañinos sobre las estructuras y las personas.

inca
Ejemplo real de hinca de tablestacas en zona urbana (Gijón) donde las vibraciones producidas fueron monitorizadas en tiempo real vía web utilizando Plataforma kBuilding.es

Si nos centramos en países europeos, cada uno aboga por tener su propia normativa:

  • Alemania – DIN 4150 ha publicado varios criterios de niveles máximos de vibración, el primero en 1975, el cual fue desglosado (3 partes) y actualizado en 1999 y 2001. Los valores indicativos recomendados por la DIN 4150:1975 dependen del tipo de edificación. Una de las características importantes en esta norma es la inclusión de valores máximos (de partícula y pico vertical) para edificaciones históricas
    Las actualizaciones de la norma DIN mencionadas son:

    • Predicción de los parámetros de medición (DIN, 2001-b)
    • Efectos en las personas dentro de edificaciones (DIN, 2001-c) y
    • Efectos en estructuras (DIN, 2001-a).
  • Escocia – PAN50 desarrollada y publicada en febrero de 2000, se basa en los estándares: BSI (British Standard Institute) BS-6472 de 1992 y BS-7385 partes 1 (sobre la medición). y 2 (sobre los efectos) de 1993. Los puntos principales tratados en esta norma en cuanto se refiere a vibraciones producidas por voladuras son:
    • Lugar donde se debe realizar las mediciones.
    • Los niveles de amplificación en estructuras, se definen en un rango de frecuencias entre 5 y 40 Hz donde las estructuras pueden amplificar los movimientos del suelo y es probable que se presente daño cosmético.
    • Los umbrales y tipos de daños en las viviendas producidos por vibraciones.
    • Los efectos de la geología en las vibraciones inducidas por voladuras.
  • España – UNE 22-381-93 La norma española “Control de vibraciones producidas por voladuras” (AENOR, 1993), tiene como objetivo principal establecer un procedimiento de estudio y control de las vibraciones producidas por voladuras en trabajos de explotación de minas, canteras, obras civiles, demoliciones y otras técnicas que requieran el uso de explosivos.
  • Suiza SN 640 315a La norma de Suiza fue elaborada para ser aplicada a las vibraciones causadas por: voladuras, maquinaria y tráfico y que pueden causar daño cosmético en la edificación. Al igual que la mayoría de las normas de control de vibraciones, no tiene en cuenta: la percepción humana, los daños en equipos delicados, y los efectos en suelos blandos de las vibraciones causadas por las fuentes antes mencionadas.
  • Suecia SS 460 48 66 La norma sueca tampoco considera las molestias causadas a humanos, ni el riesgo de equipos sensibles a vibración, pues solo contempla el efecto de las vibraciones producidas por voladuras sobre las edificaciones.
    Esta norma esta sustentada en cientos o miles de observaciones en el lecho rocoso escandinavo, donde se han podido estimar con buena certeza niveles de daño en las estructuras. Esto ha hecho que la norma tenga en cuenta varios tipos de estructuras geológicas, que otras normas no han tenido en cuenta; sin embargo, el no incluir información de frecuencias y de otras componentes diferentes a la vertical hace que sea desactualizada respecto a los estándares actuales.

Resumiendo, en algunos casos la normas existentes están orientadas exclusivamente a la valoración de vibraciones provocadas por voladuras y en otros además se tiene en cuenta  las vibraciones ocasionadas por tráfico, vías de ferrocarril, obras de construcción, etc. y su impacto en las personas afectas por su área de influencia.

Tipo de sensor y que magnitud debemos monitorizar.

En general el tipo de sensor que se debe utilizar depende de la aplicación particular. En el área de vibraciones de estructuras –dinámica estructural– lo habitual es medir las aceleraciones, las cuales están relacionadas directamente con las fuerzas inerciales en las estructuras; sin embargo, en vibraciones causadas por actividad humana, como voladuras en canteras, tráfico de vehículos, maquinaria de obra civil, etc., el objetivo es la realizar una comparación de los datos obtenidos con normas, las cuales plantean en todos los casos el uso de sensores de velocidad (Vpp).

maletin
Equipo portátil de Monitorización de Vibraciones. Plataforma kBuilding.

La explicación para medir velocidad parte de la relación entre velocidad de vibración –velocidad de partícula o resultante– y esfuerzos, en el caso idealizado de una onda plana en un medio elástico infinito, está dada por σ = εE, ε = û·/c, σ = ûE/c, siendo σ el esfuerzo, ε la deformación, E el módulo de elasticidad, û la velocidad de partícula y c la velocidad de propagación de la onda sísmica. En resumen, para un substrato geológico determinado y un tipo de edificación (lo que implica velocidad de propagación y módulo de elasticidad constante), la velocidad de vibración de partícula es la variable decisiva, es decir es la que determina los esfuerzos, los que pueden ser los causantes de daños.

¿Qué se debe medir en una estructura para monitorizarla?

Las estructuras de edificios son dinámicas ya que están sujetas a un conjunto de movimientos normalmente de carácter periódico y condicionados por diversos factores. Estos se clasifican en:

  • Cargas aplicadas que producen deformaciones de dos tipos, elásticas e inelásticas, teniendo en cuenta si se recupera la posición inicial o no. (viento, terremotos, asentamientos del terreno, etc).
  • Cambios de temperatura, que producen expansión o contracción de los materiales que conforman la estructura.
  • Cambios en la humedad del ambiente que producen hinchazón o contracción en los materiales.
  • Acciones químicas producidas por la humedad y agentes contaminantes que pueden cambiar el volumen de los materiales.

Cada uno de estos factores o la combinación de varios de ellos pueden producir movimientos en la estructura de un edificio. El objetivo de un sistema de monitorización (Ej. kBuilding.es)  es detectar y registrar estos movimientos para posteriormente mostrárselos al técnico quien podrá interpretarlos como acordes o anómalos dentro de la dinámica natural del edificio.

Un sistema de monitorización estructural permite registrar y visualizar:

  • Movimientos puntuales, producidos por excavaciones cercanas, desastres naturales (terremotos, explosiones, etc.), que pueden llevar al colapso de la estructura o por el contrario pueden producir el acomodamiento del edificio a la nueva situación.
  • Movimientos cíclicos, producidos por los cambios de temperatura y humedad del ambiente, dan lugar a deformaciones elásticas recuperándose la posición inicial al completar el ciclo.
  • Movimientos de tendencia progresiva, debidos a problemas estructurales o combinación de factores que se van acumulando a lo largo del tiempo y son los causantes de la inestabilidad de la construcción, como el efecto de fatiga con el paso del tiempo. Este tipo de movimientos, entraña el concepto de velocidad de desplazamiento. Este concepto, es fundamental a la hora de diagnosticar la evolución de la estructura.

Dentro de estos movimientos, los movimientos puntuales en general no tiene sentido intentar detectarlos ya que son impredecibles (no se puede conocer cuándo va a suceder un terremoto ni dónde) y de magnitud variable. Sin embargo en zonas específicas, obras de construcción, excavaciones importantes, si se pueden  registrar fenómenos de este tipo y un sistema de monitorización resulta de gran utilidad para una detección temprano de dichas inestabilidades.

Los movimientos cíclicos, al recuperarse, entran dentro de la dinámica natural de la estructura, sin embargo, sí que es interesante conocer su magnitud con el fin de poder diferenciarlos de los movimientos anómalos.

En las dos gráficas adjuntas se puede ver dos evoluciones de una grieta a lo largo del tiempo.

  • En la Ilustración 1 se observa que si bien se produce un movimiento en la grieta, su evolución es cíclica a lo largo del tiempo y muestra una tendencia central.
  • En la Ilustración 2, la evolución también es cíclica, sin embargo en este caso la tendencia si muestra un crecimiento a lo largo de los años. Esta estructura requiere de una acción correctiva que solucione dicha problemática.
Movimientos Ciclico
Ilustración 1. Movimiento cíclico. Fuente: http://www.kBuilding.es
Ilustración 2
Ilustración 2. Movimiento cíclico con tendencia progresiva. Fuente: http://www.kBuilding.es

Internet de las cosas aplicado a la monitorización estructural

World Cloud Internet Of Things
Nube de conceptos relacionados con el Internet de las Cosas. M2M.

En los últimos meses estamos viendo como los sistemas de información M2M (machine to machine) o popularmente denominados ‘Internet de las cosas‘ están llegando progresivamente al mercado profesional y de consumo.

Estas tecnologías aplicadas a los sistemas de monitorización de estructuras y edificios implican una nueva dimensión ya que permiten.

  • Mayor densidad de muestreo de señales estructurales.
  • Coste contenido de los equipos de captura y envío de señales.

La popularización del concepto de ‘captura de datos’ por parte de un conjunto de sensores y el envío de los mismos a una aplicación de gestión (normalmente en la ‘nube’) se puede realizar a un coste razonable utilizando un amplio abanico de dispositivos (sensores) aparecidos en el mercado.

La mayoría de estas nuevas tecnologías están basadas en placas Arduino, Raspberry Pi, etc. conectados a sensores low-cost capaces de capturar un amplio abanico de magnitudes físicas.  Así a día de hoy empiezan a aparecer empresas nacionales con soluciones sensoriales M2M para multitud de sectores (industrial, construcción, agrícola, medioambiental, etc.).

Experiencias

Nuestra experiencia con este y otros tipos de tecnologías similares se ha centrado en probar varios sistemas en instalaciones piloto con el objetivo de obtener conclusiones que nos permitiesen desarrollar o integrar un sistema propio de monitorización estructural y ambiental estable, sencillo y profesional.

2013-12-11 17.38.42
Presentación pública en congreso M2M de un primer sistema piloto de monitorización de estructuras basado en tecnología Arduino.

 

Conclusiones

Tras varios meses de diseño, experimentación y pruebas en diferentes entornos, nuestras conclusiones se resumen en:

  • Es de vital importancia la estabilidad del sistema de monitorización de estructuras. Esto implica alejarse en lo posible de tecnologías mas orientadas a la experimentación académica y que pueden adolecer de falta de estabilidad en su funcionamiento durante largos periodos de tiempo.Tener que ‘resetear’ un equipo es una operación que puede resultar imposible (o con un coste elevado por la utilización de medios auxiliares de elevación) en determinadas instalaciones por la situación del elemento sensor.
  • A nivel sensorial, los principales fabricantes de sensores de alta calidad (derivados de la obra civil) y elevada precisión se alimentan con unos niveles de tensión (12/24 V.) que un equipo alimentado con pequeñas baterías de 1.5 V. no puede alcanzar. Esto obliga en el caso de la tecnología Arduino / Raspberry Pi a la utilización de sensores de 5 V. y que no ofrecen la estabilidad en la medida ni la precisión necesaria para garantizar los datos obtenidos.
2013-08-24 20.37.30
Ejemplo de ‘prototipo‘ medidor de desplazamiento lineal alimentado a 5 V. montado sobre un fisurómetro tradicional.
  •  Las comunicaciones de los sensores basadas en protocolos de baja demanda energética ZigBee, LoRa, etc. permiten realizar instalaciones de manera rápida ya que eliminan gran parte del cableado necesario para transmitir la señal entre sensor y concentrador de señal. Sin embargo, como he comentado en el párrafo anterior, determinados sensores de alta precisión, demandan un nivel de tensión que nos ha reconducido a utilizar otro protocolos de comunicación con resultados óptimos.

Nuestra solución

El sistema desarrollado en nuestro caso (kBuilding), aúna el aprendizaje adquirido en las pruebas piloto y plantea una sistema M2M de monitorización estructural y ambiental donde combinamos las mejores tecnologías y herramientas disponibles en el mercado.

  • Al poder alimentar los sensores a 24 V, utilizamos sensores de alta precisión cuando la estructura y la patología a estudio así lo demanda.
  • Somos capaces de monitorizar vibraciones estructurales de baja frecuencia en continuo con procesamiento de señal incorporado. Cumpliendo con normativa DIN4150.
  • Determinados sensores pueden utilizar la comunicación ZigBee con la estación central de control, de esta manera eliminamos en lo posible el cableado.
  • Disponemos de bidireccionalidad en la gestión de los equipos, de esta manera somos capaces de modificar ‘on line’ la frecuencia de adquisición de datos.
  • Todos nuestros equipos pueden ser alimentados durante varios años mediante baterías de alto rendimiento o bien si es posible disponer de alimentación convencional (220 V.).
  • Tecnología ‘enchufar y listo’. El diseño de nuestros equipos, facilita al máximo la instalación al personal técnico de manera que la pues en marcha sea rápida y eficiente.
  • Los datos obtenidos son enviados a una aplicación en la ‘nube’ alojados en Amazon AWS. Integridad y accesibilidad a la información están garantizados mediante el uso de una base de datos orientada al ‘Big Data‘.

La experiencia adquirida tanto en los proyectos piloto y posteriormente en los proyectos de monitorización estructural, han reforzado nuestro planteamiento de disponer de una tecnología estable que garantice la ausencia de problemas técnicos y garantice al técnico una información de calidad.

Concentrador KBuilding
Integración de un concentrador de señal kBuilding utilizando los huecos existentes en la estructura a monitorizar. (Puente Romano. Madrid)

Además, disminuir el efecto visual de la instalación ha sido uno de los objetivos que también hemos alcanzado en nuestros proyectos mediante:

  • Uso de tecnologías inalámbricas estables.
  • Diseño optimizado (tamaño y peso) de los concentradores de señal.
  • Gran experiencia en el proceso de instalación de equipos.
2014-03-15 16.03.26
Instalación de sistema de monitorización estructural kBuilding en la Iglesia Preromanica de San Julián de los Prados. Oviedo.

 

 

 

 

 

 

¿Monitorización estructural versus Structural Health Monitoring (SHM)?

tCon la llegada de las nuevas tecnologías al sector de la construcción ha habido grandes avances en la facilidad con la que los técnicos pueden disponer de información en tiempo real de parámetros de la estructura o edificio a estudiar.

Sin embargo, es importante diferenciar entre monitorizar una estructura (con mayor o menor grado de tecnología) e implantar un sistema de monitorización de la salud estructural (en inglés SHM).

A grandes rasgos las principales diferencias se centran en:

En un sistema de monitorización estructural, el sistema se instala en la estructura/edificio con la intención de observar una posible evolución en el tiempo de la patología detectada por un técnico previa inspección. El objetivo es sustituir los testigos clásicos y los equipos de medición manual (exigen costosos desplazamientos) por sensores (fisurometros, clinómetros, etc.) capaces de registrar con gran frecuencia de medida los posibles movimientos que sucedan en la estructura durante la fase de análisis y enviarlos periódicamente a una herramienta informática capaz de registrar todos los datos y procesarlos para poder mostrarlos con rapidez por medio de gráficos de tendencia, etc. Con toda la información recabada el técnico puede emitir un informe final de calidad ya que dispone de gran cantidad de datos sobre la evolución de la estructura sometida a estudio a lo largo del tiempo.

A diferencia, un sistema de monitorización de la salud estructural (SHM) está pensado para ser instalado en una estructura ‘sana’ que no presente patología previas. El objetivo es que el sistema informático procese las señales procedentes de los diferentes sensores y de manera ‘automática’ infiera un estado de conservación de la estructura pudiendo alertar de potenciales afecciones con antelación suficiente para poder actuar. No cabe duda que se tratan de sistemas muy sofisticados que cobran sentido en estructuras críticas sometidas en muchas ocasiones a entornos complejos.

Esquema del HMS (Sistema de Monitorización de la Salud Estructural) instalado en el edificio Burj Khalifa (818 m.)

Evolucion de los Sistemas de Monitorización Estructural

La auscultación es un procedimiento clínico de exploración física que consiste en escuchar de manera directa o por medio de instrumentos como el estetoscopio, el área torácica o del abdomen, para valorar los sonidos normales o patológicos producidos en los órganos (contracción cardíaca, soplos cardíacos, peristaltismo intestinal, sonidos pulmonares, etc.).

Adaptado al sector de la construcción, la auscultación/monitorización la definiríamos como toma de datos en el edificio para estudiar posibles patologías.

Fachada en ruinas
Fachada en estado de ruina.

Se presentan dos alternativas, la de  monitorizar edificios enfermos, y la de  monitorizar edificios afectados por una obra. En el primer caso existen unos deterioros que hay que controlar, mientras que en el segundo caso, el técnico debe definir una serie de parámetros a medir para verificar que las potenciales incidencias de la obra proyectada con las colindantes son las que efectivamente suceden en la realidad.

¿En qué consiste la monitorización.?

La monitorización consiste en estudiar el edificio, investigar las patologías, definir una serie de instrumentos de medición a instalar, medirlos con la frecuencia lógica, y emitir un informe con los datos y una valoración según unos criterios de gravedad.

«La práctica totalidad de los derrumbes de edificios, por lesiones en la estructura, asentamientos de la cimentación, descalces de la cimentación por obras colindantes, nuevas cargas en edificios existentes,… se pueden evitar y prevenir con la adecuada monitorización.»

Testigo tradicional de yeso en grieta de fachada.
Testigo tradicional de yeso en grieta de fachada.

Por ejemplo, cuando se está ejecutando la excavación con sótanos de un solar en el casco viejo con colindantes sin sótanos de cimentaciones escasas, una adecuada auscultación nos puede avisar cuándo estamos empezando a afectar a las cimentaciones vecinas, y así poder adecuar las metodologías de la obra a la nueva situación.

¿Que sistemas utilizamos para monitorizar?

Desde muy antiguo ya se controlaba mediante instrumentos ópticos la inclinación de las fachadas para prevenir derrumbes a causa de obras colindantes.

Hasta ahora la instrumentación de estructuras se utiliza básicamente en obra civil para excavaciones de obras subterráneas y en determinadas excavaciones para edificios en las ciudades, sobre todo en cascos antiguos.

Esta instrumentación se basa en mecanismos que se fijan en las lesiones,  fachadas o en el terreno,  para mediante sensores portátiles determinar la evolución de sus medidas.

Estamos hablando de:

  • Fisurómetros lineales o de dos direcciones, nos dan medidas del valor de apertura de la fisura.
  • Clinómetros de fachada, nos facilitan valores de inclinación de fachadas o estructuras.
  • Inclinómetros, nos da valores de movimientos del terreno en vertical, en dirección del empuje de las tierras.
  • Líneas de asiento, nos permite medir movimientos del terreno en horizontal, para estudiar asentamientos.
  • Piezómetros permiten conocer las variaciones de los niveles freáticos (agua en el subsuelo), dato fundamental para estudiar posibles movimientos del terreno.
  • Sensores de corrosión, permiten conocer el grado y la velocidad de avance del frente de corrosión provocado por la inclusión de cloruros en la armadura.
  • Mediciones por topografía en regletas de nivelación o sobre dianas. Facilitan datos de movimientos generales de paramentos horizontales y verticales vistos y accesibles.

Tradicionalmente la instrumentación se diseñaba pensando en cómo facilitar al técnico el acceso al aparato de medida, dado que físicamente se tiene que llegar hasta él, esta situación hacía que la frecuencia de las mediciones en muchas ocasiones no era la optima.

Monitorización de estructuras en ‘tiempo real’.

Un sistema de monitorización estructural permite asegurar la integridad estructural del edificio proporcionando datos de deformación continuos a lo largo de extensos períodos de tiempo; esto permite que se realice un mantenimiento apropiado, seguro y rentable.

Este tipo de herramientas de monitorización ofrecen como principales beneficios:

  • Disponer de información precisa y en tiempo real de determinadas magnitudes físicas que se produce en una o varias estructuras/edificios.
  • Facilitar al técnico su trabajo ofreciéndole una poderosa herramienta donde dispondrá de toda la información pasada y presente del edificio monitorizado.