Monitorización de flechas en forjado sometido a nuevas cargas

En el caso que voy a presentar, la solicitud de la dirección técnica se centraba en realizar la monitorización en continuo de las deformaciones (flechas) de un forjado sujeto a nuevos esfuerzos derivados de un nuevo caso de uso del mismo.

La propiedad del inmueble realizo un proyecto de modernización que incluía entre otras medidas, la ejecución de una nueva entrada al edificio utilizando para ello un gran cajón de vidrio estructural con un peso que superaba las 40 T.  Monitorizar las flechas en el forjado inmediatamente inferior al de ubicación de la nueva estructura resultaba básico por dos motivos.

Acceso al edificio
Cajón de vidrio estructural. El elevado peso del conjunto y la limitación en las flechas máximas obligo a una monitorización en continuo de las deformaciones a lo largo del proceso de montaje mecánico y posterior estabilización de la estructura.
  1. Evidenciar que las flechas obtenidas con la nueva carga eran acordes al cálculo realizado por la dirección técnica.
  2. Asegurar que en ningún caso se superaban los movimientos límite que pudiesen afectar a la integridad del cerramiento de vidrio estructural que lógicamente por las características del propio material tiene un comportamiento no elástico.

La solución planteada por nuestro equipo técnico se resumía en instalar un total de 14 sensores capaces de registrar con precisión sub-milimétrica las flechas en cada punto de control y trasladarla a la plataforma kBuilding con el objeto de realizar un seguimiento por parte de la dirección facultativa y asistencia técnica de la propiedad.

Como elementos a destacar en esta monitorización destacan:

  • Utilización de imanes de neodimio para fijar con rapidez puntos fijos de anclaje a la estructura metálica auxiliar de refuerzo.
  • Como elemento de unión entre el punto de anclaje en la estructura y el sensor empleo de hilos de invar (baja dilatación térmica) que evitasen errores de medida motivados por los cambios de temperatura en el entorno.
  • Empleo de bases metálicas de nivelación para garantizar la linealidad vertical del desplazamiento.
K.3.JPG
Aspecto de dos sensores de desplazamiento vertical responsables de capturar y enviar a la plataforma kBuilding las deformaciones (flechas) de la estructura metálica de refuerzo instalada como refuerzo de la existente.

Tras más de 8 meses de monitorización en continuo, la estructura de refuerzo auxiliar al entrar en carga evidencio movimientos dentro del rango esperado en el calculo inicial,  luego se procedió a desmontar todo el sistema de instrumentación instalado para permitir el uso comercial del local empleado para la instalación de los equipos.

Grafica de movimientos forjado
Evolución en el tiempo de la flecha de la estructura desde el momento en que la estructura empieza a soportar la nuevas solicitaciones.

 

Monitorización de vibraciones en soterramiento urbano de vías de ferrocarril

IMG_8826.JPG
Ubicación de sensor de vibraciones apoyada a la losa inferior del soterramiento. 

Durante las obras de soterramiento urbano de las vías de tren, la ejecución de los trabajos ha obligado a que de manera puntual el trazado ferroviario discurra de manera paralela a la losa de cubierta del soterramiento.

Ante la posibilidad de que el paso continuo de trenes pudiese afectar estructuralmente a la losa inferior del soterramiento, la dirección de obra asesorada por el técnico Javier Rebollo (Rebollo Ingeniería) considera oportuno monitorizar por un lado las vibraciones en continuo en la losa inferior del soterramiento y por otra lado los posibles desplazamientos en determinadas posiciones de la losa de supresión.

El equipo de kBuilding realiza una monitorización triaxial de Vpp con frecuencia de registro máxima de 400 Hz y con un tiempo de envío a la plataforma kBuilding de apenas 60 s. Toda la información obtenida a lo largo del tiempo correlacionada con el paso de los convoyes ferroviarios ha permitido a la dirección de obra disponer de información necesaria para su toma de decisiones.

IMG_8833.JPG
Situación del concentrador de señales anclado a los pilotes laterales. Es necesario instalar un soporte horizontal para optimizar la señal GPRS.

A nivel de instalación de los equipos, el único problema surgió por la baja señal de GPRS en el interior del soterramiento. Dicha cobertura es condición necesario para el envío de los datos a la plataforma kBuilding. Para mejorar la cobertura se opto por situar la antena GPRS en una ménsula que aleja la antena de la pared y con ello se consigue optimizar la cobertura y el envío de datos.

Patrimonio Histórico: Monitorización estructural de la Iglesia de San Salvador. Leganes. Madrid.

IMG_8280.JPG
Alcanzar los más de 15 metros de altura en la nave central pasa por disponer de un equipo de elevación adecuado. 

Durante el pasado mes de Diciembre de 2016 hemos realizado una completa monitorización estructural en varios puntos críticos de la conocida Iglesia de San Salvador en Leganes. Madrid.

Contando con la dirección técnica del Arquitecto José Santos Torres, el equipo de instaladores fijó mas de 20 sensores de medida (fisurometros, inclinometros, etc.) a lo largo de diferentes puntos definidos por el Arquitecto en el interior de la Iglesia. (Nave Central, Torre, Cúpula, etc).

En este tipo de monitorización  de Patrimonio Histórico, los aspectos más importantes a tener en cuenta se resumen en 4 puntos:

(1/4). Minimizar impacto visual.

La Iglesia de San Salvador es un templo muy visitado y querido por los feligreses de Leganes, se trata de un tempo repleto de notables Retablos e Imágenes religiosas y localizada en el centro urbano de Leganes. Por todo ello, era necesario conseguir que el impacto visual de los sensores y el cableado fuese el menor posible.

img_8297-1
Minimizar el impacto de la instalación de sensores y cableado es una labor necesaria para que el sistema de monitorización pase desapercibido en un segundo plano.

Es en los pequeños detalles durante la instalación (evitar colores llamativas, fijar bien el cableado evitando catenarias inútiles, buscar esquinas para paso de cable, etc.) es donde se consiguen los mejores resultados en este aspecto.  Podemos decir que contando con el apoyo y supervisión de los técnicos desplazados del sistema de monitorización empleado (kBuilding), el resultado ha sido optimo.

(2/4). Minimizar tiempos de instalación.

La instalación  de los sensores se realizo durante las fiestas navideñas donde la Iglesia tiene una amplia agenda de actos religiosos. Los trabajos se diseñaron de manera que la instalación se realizase con rapidez. Para ello, todos los equipos y sensores se llevaron montados, ajustados y chequeados desde la oficina técnica (Pruebas FAT, SAT, SIT), además la minimización en el cableado (apenas 100 m.) en toda la instalación hace que en 12 horas de trabajo todo el sistema estuviese instalado y funcionando.

IMG_8285.JPG
Durante los trabajos de instalación de sensores y equipos fue necesario sincronizar las tareas con intervalos donde en la Iglesia se realizaban cultos acordes al periodo navideño.

(3/4). Cumplir plazos

Para la ejecución de los trabajos fue necesario coordinar los trabajos con una empresa auxiliar responsable de liberar el espacio en el interior de la Iglesia (mover bancos), colocar un suelo de madera protector  y manejar con precisión una plataforma elevadora telescópica imprescindible para alcanzar los más de 15 metros de altura en la nave central. Cumplir plazos dentro del cronograma de  montaje previsto, es permitir que los bancos puedan volver a su ubicación y que la Iglesia pueda funcionar con normalidad.

IMG_8262.JPG
Para la entrada de la plataforma elevadora de oruga en el interior de la Iglesia es imprescindible proteger el suelo. Las características de esta máquina (tamaño, peso, rangos de distancias) la hacen imprescindible para este tipo de montajes interiores. 

(4/4) Viabilidad económica. Optimizar costes

Siempre es necesario tener presente el coste de una monitorización para hacerlo compatible con el resto de requisitos del proyecto. Entendemos la monitorización como una herramienta de ‘mínimos’ que garantice tener controlada la estructura de una manera optima y rentable para todas las partes.

El enfoque basado en optimización de costes es el necesario para poder abordar proyectos de este tipo donde la necesidad del sistema es evidente pero donde también los recursos económicos disponibles (presupuesto) son muy limitados.

BIM y Monitorización estructural

Logo de BIM y SHM

En la última edición de BIMEXPO (Madrid Octubre 2016) coincidiendo con la feria CONSTRUTEC, se evidencio la cada vez mayor importancia de esta metodología de trabajo colaborativo para la creación y gestión de un proyecto de construcción.

El principal objetivo del BIM (Building Information Modeling) es centralizar toda la información del proyecto en un modelo de información digital creado por todos los agentes involucrados.  Esto supone una evolución de los sistemas tradicionales basados en planos e informes ya que incorpora información geométrica (3D), tiempos (4D) y costes (5D) así como información sobre sostenibilidad y eficiencia energética.

El uso del BIM va más allá de la fase de diseño, abarcando la ejecución del proyecto y extendiéndose a lo largo del ciclo de vida del edificio permitiendo así la gestión del mismo y reduciendo los costes de operación.

Es en este uso, una vez finalizado la ejecución del proyecto, donde la monitorización estructural, ambiental y/o energética del edificio, aportan valiosa información a la hora de optimizar los costes de explotación y mantenimiento del edificio, monumento, etc.

Actualmente, empiezan a aparecer las primeras colaboraciones entre empresas con productos complementarios entre si; por un lado empresas con plataformas de gestión integral basadas en BIM, que actúan como gestores documentales del edificio, y por otro, empresas que generan datos e informes vinculados al edificio, que encuentran en la plataforma de gestión documental basada en BIM la herramienta perfecta para clasificar esa información vinculada a las partes del edificio.

Como caso real de este tipo de colaboraciones BIM & SHM tenemos el proceso de integración realizado por los siguientes productos:

PetroBIM es una novedosa herramienta BIM capaz de integrar online y de forma visual toda la información disponible de un bien cultural, haciendo que todo tipo de proyectos de restauración, estrategias de conservación preventiva, gestión y divulgación puedan convertirse en un modelo-maqueta virtual que permita navegar, desplazarse e interactuar con él, crear secciones virtuales, generar filtros para consultar gráficas, emitir búsquedas instantáneas de información, etc.

Pantalla de Visualización de la Plataforma PetroBIM. La incorporación de datos obtenidos de la Plataforma kBuilding, permite disponer de datos de monitorización de manera integrada con otra información del monumento (ensayos, informes, etc.).

kBuilding, es una innovadora herramienta SHM orientada a ingenierías estructurales, estudios de arquitectura, empresas de construcción, servicios técnicos de ayuntamientos, etc. que facilita realizar la monitorización de estructuras, parámetros ambientales y energéticos en tiempo real custodiando, gestionando y visualizando toda la información en un servicio web capaz de gestionar los datos capturados por la red sensorial.

img_3024-copia
La captura de datos estructurales/ambientales en monumentos históricos es fundamental para un mantenimiento adecuado. Así mismo, la consulta de datos de manera centralizada y organizada, optimiza los recursos. En la foto, interior de la Iglesia Prerrománica de San Miguel de Lillo. Oviedo. Asturias.

El modelo de colaboración establecido entre ambas empresas permite que el servidor  de kBuilding responda a las peticiones realizadas por la herramienta PetroBIM cuando uno de sus usuarios desea conocer datos de alguno de los sensores instalados en el monumento monitorizado. Todos los sensores instalados aparecen localizados con precisión sobre el monumento y esto permite a los técnicos aglutinar toda la información de manera colaborativa optimizando los estudios, ensayos, informes y trabajos realizados en el monumento a lo largo del tiempo.

Resumiendo, este tipo de soluciones colaborativas entre empresas, garantiza que los datos capturados perduren a lo largo de todo el ciclo de vida del proyecto/estudio, evitando duplicidades y en muchos casos evitar estudios e información duplicada motivada por falta de organización y colaboración.

Sin duda la tecnología BIM ha aparecido para quedarse y en los próximos meses surgirán más iniciativas de este tipo, todo un avance para el sector de la construcción y  conservación del patrimonio.

Nuevos tiempos para las construcciones urbanas

 

36 madrid_austrias
La reconstrucción de edificios en cascos históricos ha sido un problema en las ciudades. Madrid de los Austrias.

 

Es estos últimos años, se ha observado un repunte en la reconstrucción y rehabilitación de edificios situados en el  casco antiguo de las ciudades, revalorizando estas zonas céntricas y dejando atrás los tiempos de decadencia a las que se habían visto sometida.

La falta de solares libres en el centro histórico, hace casi obligatoria la demolición de la estructura existente, ya sea de manera total o parcial (en el caso de que tengamos que conservar la fachada principal por tratarse de un edificio singular). La nueva promoción tendrá que adaptarse a la demanda actual del mercado, por lo que es muy habitual la construcción de sótanos para ofrecer plazas de garaje y trasteros a los nuevos inquilinos.

Una vez que estamos en el solar, es cuando aparecen las primeras tramas, cuando pasamos del papel a pie de obra. El comportamiento de una estructura sometida a cambios en su reparto de cargas hace que esta sufra movimientos. Podemos hacer un estudio previo del comportamiento que puede tener la estructura o incluso una simulación, pero en la obra pueden surgir diferentes batallas. Y es ahí cuando incorporar las nuevas tecnologías que disponemos actualmente cobra sentido. Monitorizar estas estructuras con kBuilding te ofrece mejoras en cuestiones de:

  • SEGURIDAD
  • RENDIMIENTO
  • ECONOMÍA
  • ESTÉTICA (En el caso de monitorización de edificios históricos)

Las actividades de demolición y vaciado de un solar, afectan directamente a los edificios colindantes, disminuyendo temporalmente sus prestaciones y capacidades. Uno de los primeros síntomas, son los movimientos de reajuste de la estructura debidos al efecto descarga generado por la demolición, que nos da lugar principalmente a la aparición de grupos de grietas y fisuras en las medianeras. La monitorización de estas grietas para observar su comportamiento a lo largo de la ejecución de la obra de vaciado del solar, nos puede prevenir de daños más graves e importantes en la estructura.

img_7464
Medianeras monitorizadas por kBuilding en el Barrio Salamanca, Madrid.

 

En cuanto a las excavaciones, a diferencia de las construcciones de grandes residenciales en el extrarradio, en estos casos hay que tomar una serie de precauciones, ya que se trabaja con menor grado de libertad al poder afectar a las cimentaciones de edificios anexos. En varias ocasiones hemos visto noticias sobre desplomes de muros en edificios colindantes a una obra o incluso su colapso y esto suele ocurrir por la intrusión de la excavación en zonas que afectan al terreno de cimentación del otro edificio, produciendo movimientos de tierras que comprometen a la seguridad del edificio.

Como dice el dicho, es mejor prevenir que curar, por lo que aparte de tomar las precauciones típicas, previas a la ejecución de la obra, ahora podemos beneficiarnos de nuevas tecnologías como es la monitorización remota de kBuilding. Basándonos en la colocación de sensores ( fisurómetros, inclinómetros, acelerómetros…)  que permiten registrar, visualizar y alertar de posibles movimientos en  tiempo real de la estructura que queremos controlar, manteniendo la seguridad en la zona de trabajo de la obra.

Cómo monitorizar remotamente el desplome de un muro en una Ermita

Como punto de partida de este proyecto básico de monitorización estructural, empiezo por introducir el monumento a monitorizar, en este caso se trata de la Ermita de Santa María la Antigua, también conocida como Ermita de Nuestra Señora de la Antigua o Ermita del Cementerio de Carabanchel. Se trata de un templo católico situado en Carabanchel  (Madrid) y cuyo origen se remonta al siglo XIII. Construido con un estilo románico-mudéjar, entre los años 2000 y 2002 recibió una importa rehabilitación a cargo del arquitecto Pedro Iglesias.

Como se aprecia en las imágenes, sus muros son de mampostería con verdugadas de ladrillo.

Exterior de la Emita de Santa María la Antigua. Carabanchel.

 

Hay que destacar la portada de ladrillo con tres arcos rehundidos enmarcados en un alfiz. Precisamente, en esa imagen se aprecia el fuerte desplome que presenta el muro hacia el exterior. El contrafuerte existente busca limitar ese movimiento si bien en los últimos años desde la rehabilitación del año 2003 han aparecido importantes grietas en el interior.

Muro exterior que presenta un fuerte desplome.

Esta situación, está actualmente bajo la supervisión técnica del Arquitecto José Santos Torres, quien desde un primer momento tuvo claro la conveniencia de monitorizar en continuo este movimiento de desplome de manera que se pudiese apreciar las tendencias del movimiento y así poder tomar las medidas de protección necesarias en en el supuesto de exceder determinados valores límite.

José Santos Torres, opto por instalar el kit básico de motorización ofrecido por el sistema kBuilding, este kit consta de dos sensores de desplazamiento(detectan movimiento de grietas), un clinómetro biaxial (detectan inclinaciones en dos ejes) y finalmente una sonda de temperatura y humedad ambiente.

Aspecto del kit básico kBuilding
Aspecto del kit básico kBuilding presentado en maletín con ruedas para fácil transporte.

La instalación del sistema se realizo con facilidad mediante el uso de una escalera plegable

IMG_6454
Instalación mediante escalera plegable del concentrador de señal sobre el muro exterior.

El uso para las conexiones eléctricas de conectores rápidos hace que el tiempo de instalación sea breve (apenas una hora) ya que únicamente es necesario la fijación mecánica de los equipos y los sensores.

Gracias al sistema de conexionado rápido de los sensores, todo el sistema de monitorización se instalo en apenas 1 hora.

En primer lugar se instaló el concentrador de señal a una altura del suelo aproximada de 3.5 m. Suficiente para evitar que sea fácilmente manipulado ya que en el interior del templo se celebra puntualmente culto religioso.

IMG_6460
Aspecto final de la instalación de kBuilding.- Kit Básico

Como se aprecia en la imagen, se opto por la instalación del clinómetro biaxial (a la derecha de la imagen) que registra el desplome en los dos ejes del muro. Uno de los ejes es paralelo al muro y el otro perpendicular al mismo.

En la pared perpendicular al muro, se instala un sensor de desplazamiento en una grieta profunda que aparece ligada al desplome del muro. La medida de está variable en combinación con el clinómetro se considera suficiente para asegurar el movimiento de desplome del muro. También se ha instalado una sonda de temperatura y humedad para poder relacionar posibles movimientos con determinadas condiciones termohigrométricas en el interior del templo.

El sistema de monitorización estará instalado durante varios meses según el criterio del Arquitecto José Santos Torres.

Captura Inicio Web.PNG
Página inicial de acceso al sistema kBuilding.

El acceso a la información registrada se consigue mediante el acceso vía web al sistema kBuilding donde los datos son acumulados a lo largo del tiempo para su posterior visualización en gráficas, tablas, etc.

 

 

Monitorización de una Vivienda Unifamiliar

IMG_6213
Personal a la llegada de la vivienda unifamiliar. En la vivienda no se disponía de suministro eléctrico luego todo los equipos instalados son 100% autónomos.

En este nuevo caso real de monitorización estructural utilizando la plataforma kBuilding.es, el objetivo inicial era evaluar el posible movimiento de una vivienda unifamiliar ubicada en una ladera dentro de una urbanización próxima a la ciudad de Jaén.

La vivienda unifamiliar con una superficie en planta superior a las 150 m² presenta actualmente una fuerte inclinación a favor de la ladera. La nivelación de la parcela con rellenos mal compactados se articula como la causa potencial del movimiento. Una cimentación basada en losa de hormigón, ha hecho que si bien la vivienda presente un desnivel acumulado entre de más de 15 cm, en la vivienda no han aparecido grietas. La vivienda se mueve como un bloque rígido apoyado en un terreno sin consolidar y con nulas características mecánicas.

IMG_6216(1)
Equipo concentrador de señal IP68 anclado a la solera (planta baja) de la vivienda unifamiliar. El equipo es 100% autónomo sin necesidad de suministro eléctrico.

Con la intención de seguir controlando el movimiento de la vivienda, el equipo técnico responsable de la estabilización, ha optado por la instalación de dos inclinómetros de precisión anclados a la solera de la planta sótano de la vivienda y en el punto mas alejado del eje de giro de la losa de cimentación.

 

Actualmente el sistema de monitorización lleva mas de 4 meses monitorizando el movimiento de la losa. El objetivo es pasados 6 meses de seguimiento,  ejecutar la solución técnica que permita la estabilización de la losa (inyección de mortero o ejecución de micro pilotes) y comprobar durante los siguientes 6 meses la efectividad de la solución adoptada.

A nivel de costes, este tipo de monitorización está en linea con el alcance del proyecto y su duración. Se puede redondear a un coste final de 50 €/mes por cada señal adquirida incluyendo instalación y alquiler de equipos durante la fase de monitorización.

 

Monitorización del hundimiento de una solera

30190020_m
Solera de hormigón en nave industrial de estructura mixta.

En ocasiones las instalaciones comerciales o industriales están construidas sobre capas de rellenos de gran espesor. El proyectista recurre al PG3 para determinar la calidad del relleno (seleccionados, adecuados, tolerables, marginales e inadecuados) pero durante la ejecución en muchas ocasiones un inexistente plan de control de calidad permite que las calidades del relleno así como su correcta ejecución y control (ensayo proctor, densidades in-situ, placas de carga, etc) no cumplan con lo prefijado en el  proyecto por el técnico.

Esta situación ocasiona a medio plazo un asentamiento en algunos casos de la estructura y solera (cimentaciones superficiales) y en otros (estructura pilotada) únicamente de la solera apoyada en el relleno. En cualquier caso son situaciones que exigen un estudio técnico y un seguimiento de la patología estructural que permita evaluar si el problema está solucionado o por lo menos bajo control.

El caso real que voy a exponer parte de una nave comercial construida sobre un relleno de 10 metros de arcillas que han resultado finalmente de alta deformabilidad. Si bien la estructura de hormigón prefabricado está pilotada y no se sufre movimientos, la solera de hormigón, con 40 cm de canto está sufriendo en algunas partes un hundimiento progresivo inducido por el secado de las arcillas. Con un asentamiento teórico estimado en el ultimo informe geotécnico de 16 cm., el objetivo de la propuesta técnica es controlar el asentamiento y su evolución en el tiempo.

Alternativas planteadas

Partiendo de la premisa que la estructura no sufre movimientos se plantean dos alternativas.

  • Un seguimiento topográfico de la solera. Para ello partiendo de un pilar de la estructura se diseñaría un conjunto de puntos de control en la solera que se controlarían en un intervalo de 3 meses. (4 visitas en 12 meses).
  • Una monitorización en continuo del hundimiento de la solera. Mediante la instalación de medidores de distancia de hilo inextensible anclados entre las vigas de la estructura y la solera de hormigón.
Sensor de desplazamiento por cable

Mejor solución

La instalación de 6 medidores electrónicos de distancia de hilo inextensible conectadas a una herramienta de análisis de los datos (www.kbuilding.es) ha sido la solución preferida por los técnicos responsables del proyecto.

Las tres principales ventajas que han encontrado son:

  • Posibilidad de acceder en todo momento a la información de la evolución de los movimientos de la solera en los puntos de interés.
  • Disponer de movimientos absolutos y su variación en el tiempo. Posibilidad de asociar estos movimientos con lluvias en la zona. (las arcillas deformables son muy sensibles a la presencia de agua).
  • Poder generar alarmas si se producen movimientos fuera de los límites de control preestablecidos.

En resumen, en este proyecto, con un presupuesto equivalente para ambas alternativas, el disponer de 6 puntos monitorizados y estrategicamente situados en una solera de aproximada de 4.000 m² unido a conocer en tiempo real datos sobre su movimiento en función al tiempo ofrece a los técnicos responsables del proyecto más información útil que la alternativa de un seguimiento topográfico discreto (medidas cada 3 meses) de un mayor número de puntos.

Monitorización de vibraciones en una estructura

 

Representacion onda sísimica

Muchas actividades diarias que ocurren en una sociedad industrializada generan vibraciones: tráfico de toda clase de vehículos, cercanía a vías de tren, proximidad de maquinaria de construcción, zonas de gran actividad industrial e incluso proximidad a canteras donde se producen frecuenten voladuras como parte de su actividad de explotación.

Estas vibraciones pueden generar molestias a las personas y daño estructural. El potencial de efectos perjudiciales depende de diversas características de estas vibraciones: por un lado amplitud, frecuencia, duración y por otro de las propiedades de comportamiento dinámico de los sistemas que excitan (frecuencia de resonancia y resistencia de la estructura).

Resumiendo, es el sistema que compone fuente emisora-suelo transmisor-estructura el que determina en conjunto el efecto del fenómeno vibratorio.

A nivel operativo, para los técnicos generalmente no nos es factible –por tiempos y costes– realizar evaluaciones detalladas de las componentes a predecir, y así poder controlar los efectos de las vibraciones en la estructura. Se recurre entonces a leyes empíricas generalizadas, recomendaciones genéricas y normas para evaluar si las vibraciones generadas por actividad humana pueden tener efectos dañinos sobre las estructuras y las personas.

inca
Ejemplo real de hinca de tablestacas en zona urbana (Gijón) donde las vibraciones producidas fueron monitorizadas en tiempo real vía web utilizando Plataforma kBuilding.es

Si nos centramos en países europeos, cada uno aboga por tener su propia normativa:

  • Alemania – DIN 4150 ha publicado varios criterios de niveles máximos de vibración, el primero en 1975, el cual fue desglosado (3 partes) y actualizado en 1999 y 2001. Los valores indicativos recomendados por la DIN 4150:1975 dependen del tipo de edificación. Una de las características importantes en esta norma es la inclusión de valores máximos (de partícula y pico vertical) para edificaciones históricas
    Las actualizaciones de la norma DIN mencionadas son:

    • Predicción de los parámetros de medición (DIN, 2001-b)
    • Efectos en las personas dentro de edificaciones (DIN, 2001-c) y
    • Efectos en estructuras (DIN, 2001-a).
  • Escocia – PAN50 desarrollada y publicada en febrero de 2000, se basa en los estándares: BSI (British Standard Institute) BS-6472 de 1992 y BS-7385 partes 1 (sobre la medición). y 2 (sobre los efectos) de 1993. Los puntos principales tratados en esta norma en cuanto se refiere a vibraciones producidas por voladuras son:
    • Lugar donde se debe realizar las mediciones.
    • Los niveles de amplificación en estructuras, se definen en un rango de frecuencias entre 5 y 40 Hz donde las estructuras pueden amplificar los movimientos del suelo y es probable que se presente daño cosmético.
    • Los umbrales y tipos de daños en las viviendas producidos por vibraciones.
    • Los efectos de la geología en las vibraciones inducidas por voladuras.
  • España – UNE 22-381-93 La norma española “Control de vibraciones producidas por voladuras” (AENOR, 1993), tiene como objetivo principal establecer un procedimiento de estudio y control de las vibraciones producidas por voladuras en trabajos de explotación de minas, canteras, obras civiles, demoliciones y otras técnicas que requieran el uso de explosivos.
  • Suiza SN 640 315a La norma de Suiza fue elaborada para ser aplicada a las vibraciones causadas por: voladuras, maquinaria y tráfico y que pueden causar daño cosmético en la edificación. Al igual que la mayoría de las normas de control de vibraciones, no tiene en cuenta: la percepción humana, los daños en equipos delicados, y los efectos en suelos blandos de las vibraciones causadas por las fuentes antes mencionadas.
  • Suecia SS 460 48 66 La norma sueca tampoco considera las molestias causadas a humanos, ni el riesgo de equipos sensibles a vibración, pues solo contempla el efecto de las vibraciones producidas por voladuras sobre las edificaciones.
    Esta norma esta sustentada en cientos o miles de observaciones en el lecho rocoso escandinavo, donde se han podido estimar con buena certeza niveles de daño en las estructuras. Esto ha hecho que la norma tenga en cuenta varios tipos de estructuras geológicas, que otras normas no han tenido en cuenta; sin embargo, el no incluir información de frecuencias y de otras componentes diferentes a la vertical hace que sea desactualizada respecto a los estándares actuales.

Resumiendo, en algunos casos la normas existentes están orientadas exclusivamente a la valoración de vibraciones provocadas por voladuras y en otros además se tiene en cuenta  las vibraciones ocasionadas por tráfico, vías de ferrocarril, obras de construcción, etc. y su impacto en las personas afectas por su área de influencia.

Tipo de sensor y que magnitud debemos monitorizar.

En general el tipo de sensor que se debe utilizar depende de la aplicación particular. En el área de vibraciones de estructuras –dinámica estructural– lo habitual es medir las aceleraciones, las cuales están relacionadas directamente con las fuerzas inerciales en las estructuras; sin embargo, en vibraciones causadas por actividad humana, como voladuras en canteras, tráfico de vehículos, maquinaria de obra civil, etc., el objetivo es la realizar una comparación de los datos obtenidos con normas, las cuales plantean en todos los casos el uso de sensores de velocidad (Vpp).

maletin
Equipo portátil de Monitorización de Vibraciones. Plataforma kBuilding.

La explicación para medir velocidad parte de la relación entre velocidad de vibración –velocidad de partícula o resultante– y esfuerzos, en el caso idealizado de una onda plana en un medio elástico infinito, está dada por σ = εE, ε = û·/c, σ = ûE/c, siendo σ el esfuerzo, ε la deformación, E el módulo de elasticidad, û la velocidad de partícula y c la velocidad de propagación de la onda sísmica. En resumen, para un substrato geológico determinado y un tipo de edificación (lo que implica velocidad de propagación y módulo de elasticidad constante), la velocidad de vibración de partícula es la variable decisiva, es decir es la que determina los esfuerzos, los que pueden ser los causantes de daños.

¿Durante cuanto tiempo monitorizar una estructura?

Ilustración Cuadro de monitorización estructural

A menudo, técnicos colaboradores de nuestra plataforma de monitorización estructural (www.kBuilding.es) nos plantean la cuestión sobre cuanto tiempo es necesario monitorizar una estructura sometida a estudio patológico. Nuestro criterio es pensar en cual es el objetivo que buscamos con la monitorización.

Hemos identificado tres posibles escenarios que consideramos interesante compartir…

 

1.) Alertar de la activación de una patología existente.

En algunos casos, un sistema de monitorización estructural se puede instalar como un ‘vigilante durmiente’ que nos alerte sobre un posible movimiento estructural (Ej: Una fisura/grieta inactiva que vuelve a activarse, un muro que varios años sin movimiento comienza a inclinarse, etc.).

En estos casos el planteamiento optimo consiste en instalar sensores que únicamente detecten estas situaciones de alerta pero sin cuantificar numéricamente el movimiento. De esta manera el coste de la instalación y el mantenimiento del sistema es mínimo y la estructura está controlada 24h x 365 días por tiempo ilimitado.

 

2.) Determinación de la tendencia del movimiento.

Más importante que la propia patología detectada es su evolución en el tiempo. Cualesquiera que sea el método de análisis planteado, siempre será necesario una observación detenida como parte del método del análisis. Esta observación, es difícil por no decir imposible sin la adecuada instrumentación con la frecuencia adecuada.

El objetivo de instalar un sistema de monitorización estructural es facilitar al técnico de una herramienta que le permita definir/validar un modelo de comportamiento de la estructura en base a las tendencias de las variables monitorizadas.

‘Una fisura o grieta, no es mas perjudicial por ser mayor su amplitud, sino por su estado de evolución en el tiempo.’

En general, el periodo de tiempo de observación dependerá de:

  • la precisión y exactitud alcanzada con el sensor utilizado. Lógicamente cuanto mayor sean estas más rápido se podrá fijar la tendencia (creciente/decreciente) de un movimiento estructural.
  • la velocidad de desplazamiento  que llegue a presentar la patología estructural analizada.

 

3.) Determinación de movimientos cíclicos.

Habitualmente, temperatura y humedad son factores que afectan a los materiales con los que está construido la estructura/edificio. Estos factores crean efectos de dilatación y contracción estructural provocando movimientos cíclicos.

Entre estos efectos cíclicos predominan dos:

  • Variación día/noche.
  • Variación verano/invierno, correspondiente a periodos en los que se alcanzan máximos y mínimos valores para esos factores.

Un sistema de monitorización estructural permite observaciones en intervalos muy cortos de tiempo (minutos/horas/etc.) de manera que cualquier efecto cíclico cuyo periodo sea menor que el correspondiente a la captura de la información va a ser detectado siempre y cuando los sensores utilizados dispongan de la precisión/exactitud adecuada.

‘Una estructura total o parcialmente fisurada, sólo indica que está trabajando de forma distinta a como se pensó en origen.’

Ya que las deformaciones/movimientos de la estructura debidas a cambios de temperatura y cambios de estación a lo largo de un año fluctúan entre unos valores máximos y mínimos, intercalando periodos de recuperación. El sistema de monitorización estructural garantiza determinar dichos comportamientos naturales de las estructuras distinguiéndolos de otros movimientos anómalos.

En estos casos el periodo de observación ha de extenderse durante al menos un ciclo completo del movimiento a estudiar. (Ej: 12 meses en el caso de ciclo verano/invierno.)